秦杰,男,副研究员,研究生学历,博士学位
简历
学习经历:
1999年至2003年,华中农业大学,资源环境学院,学士
2003年至2006年,华中农业大学与中科院地理所,硕士
2006年至2010年,香港中文大学(CUHK),地理与资源管理系,博士
工作经历:
2011年至2013年,清华大学,水利系,博士后
2016年至2017年,挪威科技大学(NTNU),水利系,国家公派访问学者
2013年至今,河海大学,港口海岸与近海工程学院,副研究员
研究方向
主要研究领域为河流动力学与河床演变学,具体方向包括河流地貌、河床形态、泥沙起动与输移机理、航道整治建筑物对河床影响。
主讲课程
必修课:大禹班《河流动力学》、中港班《River dynamics》、中港班《River Training》
公选课:《航道疏浚》
科研项目
主持项目
(1)2012年至2013年,获得中国博士后科学基金第52批面上资助——《粗化卵石床面粗糙度变化研究》
(2)2014年至2016年,获得国家内河航道整治工程技术研究中心暨水利水运工程教育部重点实验室开放基金资助——《卵石河床床面结构与水流紊动特征》
(3)2015年至2017年,获得江苏省自然科学基金——青年基金资助,《丁坝群与主流区泥沙交换过程》
(4)2015年至2016年,获得江苏省高层次创新创业人才引进计划——双创博士(境外世界名校类)资助——《山区河流河床演变特征》
(5)2015年至2017年,获得清华大学水沙科学与水利水电工程国家重点实验室开放基金资助——《卵石边滩的泥沙起动》
(6)2015年至2018年,获得中央高校基本科研业务费资助——《丁坝群附近水沙动力关系与河床演变规律》
(7)2016年至2018年,获得国家自然科学基金——青年基金资助,《沙波统计动力学特征与沙波阻力的关系》
(8)2018年至2019年,获得南京水利学院研究院水文水资源与水利工程科学国家重点实验室开放基金资助——《山区河流河床形态特征与水流阻力关系》
(9)2019年至2021年,获得获得中央高校基本科研业务费资助——《河床形态特征与水流阻力关系》
(10)2023年至2024年,获得长江航道规划设计研究院自主科研立项资助——《基于三维紊流水沙模型的径潮流共同作用复杂分汊航道泥沙输移机理研究》
(11)2020年至2024年,获得国家自然科学基金——面上基金资助,非恒定流非均匀沙床面形态统计动力学特征与水流阻力关系(52079043)
参与项目
(1)2004年至2006年,国家自然科学基金项目主要参与人——《 小区试验研究和坡面土壤侵蚀模型研 》
(2)2007年至2010年,香港政府重点自然基金项目主要参与人——《Can We Make Slopes Greener? A Critical Evaluation of Slope Bioengineering Measures In Hong Kong》
(3)2011年至2012年,国家重点基础研究发展计划(973)主要参与人——《山区小流域暴雨洪水演进过程与山洪灾害形成机理》课题
(4)2012年至2013年,国家自然科学基金重点项目主要参与人——《非均匀泥沙输移的基础理论》课题
(5)2012年至2013年,“十二五”国家科技支撑计划主要参与人——《金沙江下游水库群联合航运方式研究》项目
(6)2016年至2020年,国家重点研发计划项目主要参与人《黄河下游河道与滩区治理研究 》——子课题《黄河下游水沙输移模型》
(7)2017年至2018年,作为主要参与人参与EnergiX-program of the Research Council of Norway [project no. 255318/E20] Linking physical wall roughness of unlined tunnels to hydraulic resistance – The Tunnel Roughness project
(8)2024年至2028年,国家重点研发计划项目主要参与人《三花间典型河道洪水演进预报的数据同化与实时校正》
论文论著
(1) Ng, S. L., Cai, Q. G., Ding, S. W., Chau, K. C., & Qin, Jie. (2008). Effects of contour hedgerows on water and soil conservation, crop productivity and nutrient budget for slope farmland in the Three Gorges Region (TGR) of China. Agroforestry Systems, 74(3), 279–291.
(2) Ng, S. L., Chu, L. M., Li, L., & Qin, Jie. (2011). Performance assessment of slope greening techniques in Hong Kong. Asian Geographer, 28(2), 135–145.
(3) Qin, Jie., & Ng, S. L. (2011). Multifractal characterization of water-worked gravel surfaces. Journal of Hydraulic Research, 49(3), 345–351. (二区)
(4) Qin, Jie., & Ng, S. L. (2012). Estimation of Effective Roughness for Water-Worked Gravel Surfaces. Journal of Hydraulic Engineering-ASCE, 138(11), 1–14.
(5) Qin, Jie., Zhong, D., Ng, S. L., & Wang, G. (2012). Scaling Behavior of Gravel Surfaces. Mathematical Geosciences, 44(5), 583–594.
(6) Qin, Jie., Zhong, D., Wang, G., & Ng, S. L. (2012). On characterization of the imbrication of armoured gravel surfaces. Geomorphology, 159-160, 116–124.(二区)
(7) Qin, Jie., Zhong, D., Wang, G., & Ng, S. L. (2013). Influence of particle shape on surface roughness: Dissimilar morphological structures formed by man-made and natural gravels. Geomorphology, 190, 16-26. (二区)
(8) Qin, Jie., Zhong, D., Wang G., & Ng, S. L. (2013). Characterizing sand ripples at equilibrium phases. Journal of Hydrology and Hydromechanics, 61(4), 293-298.
(9) Qin, Jie., Wu, T., & Zhong, D. (2015). Spectral behavior of gravel dunes. Geomorphology, 231, 331–342. (二区)
(10) Qin, Jie., Zhong, D., Wu, T., & Wu, L. (2017). Evolution of gravel surfaces in a sediment-recirculating flume, Earth Surface Processes and Landforms, 42(9), 1397-1407. (二区)
(11) Wu, L., Qin, Jie., Wu, T., & Li, X. (2017). Trends in global ocean surface wave characteristics as represented in the ERA-Interim wave reanalysis for 1979–2010. Journal of Marine Science and Technology. 31(2), L24302-8.
(12) Qin, Jie., Zhong, D., Wu, T., & Wu, L. (2017). Sediment exchange between groin fields and main-stream. Advances in Water Resources, 108, 44–54. (二区)
(13) Wu, T., & Qin, Jie. (2018). Experimental Study on the Overtopping Dam Failure of a Tailings Impoundment. Mine Water and the Environment, 37, 272-280.
(14) Qin, Jie., Aberle, J., Pierre-Yves, H., Wu, T., & Zhong, D. (2019). Statistical significance of structure function analysis applied to armored gravel beds. Journal of Hydraulic Research, 57(1), 90-106. (二区)
(15) Navaratnam, C., Aberle, J., Qin, Jie., & Henry, P. (2018). Influence of Gravel-Bed Porosity and Grain Orientation on Bulk Flow Resistance. Water, 10(561).
(16) Gao, Y., Qin, Jie., Wang, Z., & Østerhus, S. W. (2019). Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: A review. Journal of Membrane Science, 587, p.117136. (一区)
(17) Jia D., Qin, Jie., Zhang X., & Chen, C. (2020). A new semi-analytical method to calculate the fluvial erosion rate of non-cohesive riverbanks. Water Resources, 47(4), 550-559.
(18) Qin, Jie., Wu, T., Jia, D., & Zhong, D. (2020). Discussion on Determination of Equivalent Roughness of Bridge Piers’ Flow Resistance by Xing Yang, Jun Qian, and Songgan Weng. Journal of Hydrologic Engineering-ASCE, 25(7): 07020007.
(19) Qin, Jie, Teng Wu, & Deyu Zhong. (2020). “Discussion of ‘Friction Modeling of Flood Flow Simulations’ by Vasilis Bellos, Ioannis Nalbantis, and George Tsakiris.” Journal of Hydraulic Engineering-ASCE 146 (5): 07020008–3. Doi:10.1061/(ASCE)HY.1943-7900.0001747.
(20) Qin, Jie., Wu, T., Jia, D., & Zhong, D. (2020). Discussion on ‘flow resistance in a compound channel with diverging and converging floodplains’ by Bhabani Shankar Das and Kishanjit Kumar Khatua, Journal of Hydraulic Engineering-ASCE, 146 (6): 07020010-2.
(21) Wu, T., & Qin, Jie. (2020). Influence of flow and sediment transport processes on the sedimentation in groyne fields, Journal of Coastal Research, 95(sp1)
(22) Qin, Jie., & Wu, T. (2020). Comment on “Analysis of Flow Resistance Equations in Gravel-Bed Rivers with Intermittent Regimes: Calabrian fiumare Data Set” by G. Mendicino and F. Colosimo. Water Resources Research, 56(3), doi: 10.1029/2019WR026633 (一区)
(23) Qin, Jie., & Wu, T. (2020). Comment on “A Modified Particle Filter-Based Data Assimilation Method for a High-Precision 2-D Hydrodynamic Model Considering Spatial-temporal Variability of Roughness: Simulation of Dam-Break Flood Inundation” by Cao et al. Water Resources Research, 56(5), doi: 10.1029/2019WR026856 (一区)
(24) Gao, Y., Zhang, Y., Dudek, M., Qin, J., Øye, G., Østerhusa, S. W., (2020). A multivariate study of backpulsing for membrane fouling mitigation in produced water treatment, Journal of Environmental Chemical Engineering, 2(9), 104839. (二区)
(25) Qin, J., Lei, X., Wu, T., & Xia, L., (2022). Discussion of “Development of Synthetic Rating Curves: Case Study in Iowa” by Felipe Quintero, Marcela Rojas, Marian Muste, Witold F. Krajewski, Gabriel Perez, Shirley Johnson, Amanda Anderson, Toby Hunemuller, Bill Cappuccio, and Jeffrey Zogg, Journal of Hydrologic Engineering-ASCE. 07021008-
(26) Bao, S., Zhang, W., Qin, J., Zheng, J., Lv, H., Feng, X., Xu, Y., Hoitink, A. J. F. (2022). Peak Water Level Response to Channel Deepening Depends on Interaction Between Tides and the River Flow. Journal of Geophysical Research: Oceans. Doi: 10.1029/2021JC017625 (一区)
(27) Wu, T., Qin, J., Zhang, X., Qu, S., Feng, X., Guo, R. (2022). Galvanic corrosion of mill-scaled carbon steel coupled to AISI 304 stainless steel in the chloride-contaminated mortars. Journal of Materials in Civil Engineering-ASCE, Doi: 10.1061/(ASCE)MT.1943-5533.0004722.
(28) Wu, T., Lei, X., Xia, L., Qin, J. (2022). Discussion on “Prediction of Flow Resistance in an Open Channel over Movable Beds Using Artificial Neural Network” by Satish Kumar, Jnana Ranjan Khuntia, and Kishanjit Kumar Khatua, Journal of Hydrologic Engineering-ASCE DOI: 10.1061/(ASCE)MT.1943-5533.0004722
(29) Jing, Ye, and Jie Qin. (2023). The Influence of the Development of Dunes on the Stability of Bifurcations in Sand‐bed Rivers. Earth Surface Processes and Landforms, esp.5567. Doi: 10.1002/esp.5567. (二区)
(30) Luo, K., Wang, Y., Wang, L., Lin, H., Qin, Jie., Xie, D., Flemming, B., Gao, S., Yu, Q., 2023. Exploring distinct types of intertidal bars on either side of a small estuary using a multifaceted approach. Marine Geology 461, 107078. (二区)https://doi.org/10.1016/j.margeo.2023.107078
(31) Jie Qin, Qiran Li, Teng Wu, 2024, Discussion of ``Nikuradse Roughness Height Derived from a Physically Based Model Applied to a River Channel with Dunes'' By Jose M. Diaz Lozada et al. Journal of Hydraulic Engineering-ASCE, Doi: 10.1061/JHEND8.HYENG-14155
(32) Jie Qin, Huiming Ding, Teng Wu, 2024, Discussion of “Mixed Velocity Scale for Predicting Bed-Material Sediment Discharges in Open Channel Flows” By Nian-Sheng Cheng et al. Journal of Hydraulic Engineering-ASCE, Doi: 10.1061/JHEND8.HYENG-14160
(33) Qin, J., Li, Q., Wu, T., Ding, H., 2024. Quantitative Analysis of Grain Orientation as a Proxy for Historical Flow Dynamics. Journal of Geophysical Research-Earth Surface. https://doi.org/10.1029/2023JF007480 (二区)
(34) Qin, Jie., & Aberle, J., 2018. Spectral Behavior of Sand Bed Rivers at Small Wavelengths. In M. B. Kalinowska, M. M. Mrokowska, & P. M. Rowiński, eds. Free Surface Flows and Transport Processes. GeoPlanet: Earth and Planetary Sciences. Cham: Springer International Publishing, doi:10.1007/978-3-319-70914-7_24.
(35) Qin, Jie., Wu, T., & Zhong, D. (2019). Quantitative characterization of the roughness of four artificially prepared gravel surfaces. Recent Trends in Environmental Hydraulics. GeoPlanet: Earth and Planetary Sciences. Cham: Springer International Publishing, doi: 10.1007/978-3-030-37105-0_19.
(36) Wu, T., Qin, J., Guo, R. (2022). Ecological Evaluation of Waterways Based on Modified Neural Networks. Y. Li et al. (Eds.): PIANC 2022, pp. 1068–1075 doi: 10.1007/978-981-19-6138-0_94
(37) Qin, J., Jing, Y., Lei, X., Wu, T., Agbemafle, E. (2022). Flow and Sedimentation Characteristics of Tidal Waterways – with the Kouanzhi Waterway in the Lower Yangtze River as an Example. Y. Li et al. (Eds.): PIANC 2022, pp. 1338–1348. Doi: 10.1007/978-981-19-6138-0_117
(38) Jing, Y., Lei, X., Qin, J., Wu, T. (2022). On Characterizing Flow Resistance in a Tidal Reach. Y. Li et al. (Eds.): PIANC 2022, pp. 1369–1378. Doi: 10.1007/978-981-19-6138-0_120
(39) Navaratnam, C.U., Aberle, J., Qin, J., Henry, P.-Y., 2018. An experimental investigation on the flow resistance over a porous gravel-bed surface and its non-porous counterpart. E3S Web Conf. 40, 05073–8. https://doi.org/10.1051/e3sconf/20184005073
(40) 秦杰, 钟德钰, 2012. 卵石床面的结构特征. 水利学报 43, 142–147.
专利申请
(1) 秦杰,吴腾,冯兴国,吴玲莉;一种基于电磁感应原理测量卵石推移质输沙率的方法, 发明专利号: ZL201910992048.8, 2021-09-28
(2) 秦杰,吴腾,李秀霞;一种漫滩水流滩槽过流量的计算方法,发明专利号: ZL201610705135.7, 2018-07-13
(3) 秦杰,白驹,吴腾,冯兴国,冷晴,叶圣南;一种基于温度变化测量水体含沙量的方法,发明专利号: ZL202010134293.8, 2021-09-24
(4) 秦杰,叶圣南,吴腾;一种基于小波分析的河漫滩高程确定方法,发明专利号:ZL201911323250.8,2020-05-31
标准规范
(1) 2020年,国际航运协会 PIANC (World Association for Waterborne Transport Infrastructure),WG228 (EXTENDED VALUES OF‘LOW-USE’ INLAND WATERWAYS), 工作组委员
(2) 2023年,中国水力发电工程学会,团体标准,《泥沙淤积对水库功能影响评价导则》
(3) 2024年,国际航运协会 PIANC ,WG249 (ADAPTATION OF INLAND WATERWAYS INFRASTRUCTURE FOR CLIMATE CHANGE IMPACTS)工作组委员
(4) 2024年,安徽省交通运输厅,安徽省地方标准,《内河航道工程生态评价指南》
表彰奖励
(1) 2010年,最佳论文奖,《海峡两岸三地环境与资源学术研讨会暨第二届中国环境资源 与生态保育学会》
(2) 2010年,大会主题报告,《海峡两岸三地环境与资源学术研讨会暨第二届中国环境资源与生态保育学会》
(3) 2015年,受邀参加 Gravel Bed River 8 研讨会,京都,日本
(4) 2015年,获得江苏省高层次创新创业人才引进计划(双创计划)——双创博士(境外世界名校类)资助
(5) 2016年,第37届国际水力研究大会(2017),国际科学委员会成员 (International Scientific Committee, 37th IAHR World Congress 2017, Kuala Lumpur, Malaysia) 吉隆坡,马来西亚
(6) 2016年,指导本科毕业生获得《河海大学优秀本科毕业设计(论文)》并获得优秀指导教师称号
(7) 2018年,指导本科生毕业生获得《河海大学优秀本科毕业设计(论文)》并获得优秀指导教师称号
(8) 2019年,指导本科生毕业生获得《河海大学优秀本科毕业设计(论文)》并获得优秀指导教师称号
(9) 2022年,长航局科技创新奖二等奖,《长江径潮流共同作用典型河段滩槽联动机理研究》(排名第四)
(10) 2024年,中国航海学会科学技术奖二等奖(省部级),《长江南京以下12.5米深水航道养护疏没精准预测关键技术研究与应用》(排名第二)
(11) 2024年,指导硕士研究生敬业同学获得《河海大学优秀学术学位硕士学位论文》
(12) 2024年,指导硕士研究生敬业同学获得《第六届全国水利类优秀硕士论文》